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Abstract 
Site-specific extension services are potentially more relevant for farmers than generalized extension 
recommendations that do not take into account localized variation in production conditions but this 
remains an empirical question. In this paper, we analyze the causal effects of farmers’ exposure to site-
specific nutrient management information for maize from an ICT-enabled extension tool in Nigeria. To 
estimate the causal effects, we implement a randomized controlled trial (RCT). We find evidence that 
the informational interventions improved farmers’ fertilizer application rates but this is only significant 
for farmers whose application rates prior to the interventions are below the site-specific recommended 
rates for their growing conditions. Also, we find strong evidence of a significant increase in take-up of 
recommended fertilizer use management practices in response to the interventions. In terms of yield 
response, the interventions generated positive and significant maize yield gains which largely operate 
through better fertilizer management practices. Furthermore, we find that farmers exposed to site-specific 
nutrient management with additional information on the variability of expected returns have better 
responses in their input use decisions. This suggests that access to information on the riskiness of 
expected returns has consequences for farmers’ behavioral responses to agronomic recommendations.  
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1. Introduction 

Crop yields are often far below attainable yields, leading to substantial yield gaps with other regions 
(Guilpart et al., 2017; Benson and Mogues, 2018). A primary biophysical constraint is the depletion of 
soil fertility arising from poor soil fertility management (Sanchez, 2002; Berazneva et al., 2018). Yet, 
the use of fertilizer to address the poor fertility of soils is still on average low in SSA (Harou et al., 2017; 
Benson and Mogues, 2018; Jayne et al., 2019). It is well documented that informational inefficiencies on 
correct fertilizer use (e.g. what type, what rate, when, and how to apply) and soil fertility management in 
general contributes in limiting the use of fertilizer as well as the returns to fertilizer use (Liverpool-Tasie 
et al., 2017; Harou et al., 2017). Most agricultural extension systems in SSA provide only generalized or 
‘blanket’ soil fertility management recommendations to farmers in large growing areas (Shehu et al., 
2018; Oyinbo et al., 2019). Such recommendations are provided to farmers at scales beyond the farm, 
village, province, and/ or region and do not account for the substantial variation in biophysical and 
socioeconomic conditions of farmers. More effective soil fertility management will likely require 
relevant site-specific extension services, in which recommendations are tailored to the field-specific 
conditions of individual farmers but this remains an empirical question. 

There is a growing interest in the use of information and communication technology (ICT) 
enabled decision support tools (DSTs) in provision of site-specific information. In the context of soil 
fertility, a nutrient management extension tool for maize, called ‘Nutrient Expert’ (NE) was developed 
for Nigeria to enable extension systems provide site-specific soil fertility information to farmers1. 
Empirical agronomic studies that have evaluated the use of NE for maize in some parts of Asia are mainly 
based on experimental plots monitored by researchers or researcher-farmer managed trials (Pampolino 
et al., 2012; Xu et al., 2016). Such experimental plots may not reflect real-world farm settings where 
farmers have full control over their resource allocations and management practices (Duflo et al., 2008; 
Beaman et al., 2013; Jayne et al., 2019).   

In this paper, we undertake a rigorous evaluation of the impacts of farmers’ access to site-specific 
nutrient management (SSNM) information enabled by the NE tool, which has hitherto not been addressed 
in Nigeria and SSA at large to the best of our knowledge. The outcomes of interest are fertilizer use rate, 
take-up of fertilizer use management practices and yield. Specifically, we test two hypotheses. First, we 
test whether or not farmers respond differently to SSNM versus blanket recommendations in terms of 
the outcomes of interest and secondly, we test whether or not complementary information about 
variability of returns also impacts farmers’ responses to SSNM. To do so, we implement a clustered 
randomized controlled trial (RCT) with two treatment groups who are exposed to SSNM informational 
interventions using the tool and a control group who do not receive the interventions. This involves 792 
farmers in the maize belt of northern Nigeria.  

Our paper address the paucity of empirical evidence on farm-level effects of farmers’ exposure 
to site-specific extension services for soil fertility management in a real-world farm condition beyond 
results from experimental plots, on-farm evaluation trials and demonstration plots. Also, we make the 
first attempt in the literature to provide evidence on farmers’ behavioral response to site-specific 
extension services that offer complementary information on variability of expected returns on 
investment. In terms of causal identification, our paper contributes to the relatively scant literatures on 
the use of field experiments in development economics to explain farmers’ behavioral responses to soil 
fertility-related informational interventions (e.g. Islam, 2014; Fishman et al., 2016). Furthermore, we 
contribute to the emerging literature on experimental evidence-based application of mobile technologies 
in agricultural extension (e.g. Larochelle et al., 2019). However, our study differs from previous studies 
in that our soil fertility informational interventions have both features of being site-specific and delivered 
                                                           
1 The tool was also developed for Ethiopia and Tanzania as part of the project ‘Taking Maize Agronomy to Scale in Africa’ (TAMASA) in 
Nigeria, Ethiopia and Tanzania, funded by the Bill and Melinda Gates Foundation. This project is led by CIMMYT and supported in Nigeria 
by IITA, and Bayero University Kano.  



to farmers using a DST. Finally, we extend the use of randomization inference which is highly 
recommended for randomized experiments with cluster design (Athey and Imbens, 2017).  

The remainder of the paper is structured as follows. In section 2 we provide a conceptual 
framework. Section 3 presents the research design and identification strategy. In section 4 we present our 
main results and provide detailed discussion of the results in Section 5. Section 6 concludes the paper. 
 
2. Conceptual framework  
To conceptualize how SSNM information enabled by DSTs can induce investment in yield-increasing 
inputs such as fertilizer and complementary management practices, we employ a model of agricultural 
technology adoption under limited information-induced uncertainty adapted from Magruder (2018). In 
fertilizer investment decisions, we assume that smallholders’ face uncertainty about the production 
function that can be realized in each possible state of nature, 𝑡𝑡 ∈ 𝑇𝑇 and the probability of realizing a given 
production function 𝑡𝑡 in 𝑇𝑇 is denoted as 𝜋𝜋𝑡𝑡. This is in addition to the uncertainty from a realization of the 
state of the world, which varies over space and time (random weather or output price realizations), 𝑠𝑠 ∈
𝑆𝑆. The probability of state 𝑠𝑠 in 𝑆𝑆 is expressed as 𝜋𝜋𝑠𝑠. Following Magruder (2018), we specify a simplified 
model of farm-household decision making with two periods, two sources of uncertainty and a farmer’s 
objective is to maximize utility from consumption in the two periods:  
                                                          𝑢𝑢(𝑐𝑐0) +  𝛽𝛽 � 𝜋𝜋𝑠𝑠𝜋𝜋𝑡𝑡𝑢𝑢(𝑐𝑐𝑠𝑠,𝑡𝑡

1 )
𝑠𝑠∈𝑆𝑆,𝑡𝑡∈𝑇𝑇

                                                    (1) 

Where  [𝑢𝑢(𝑐𝑐0)] is utility from consumption in period 0 (planting season), [𝑢𝑢�𝑐𝑐𝑠𝑠,𝑡𝑡
1 �] is utility from 

expected consumption in period 1 (harvest season), 𝛽𝛽 is a discount factor. With available cash (𝑌𝑌), a 
farmer can invest in risky farm inputs (𝑥𝑥) such as fertilizer in period 0 to produce a state-conditioned 
output [𝑓𝑓𝑠𝑠,𝑡𝑡(𝑥𝑥)] in period 1, and a safe asset (𝑎𝑎) to earn interest (𝑅𝑅) in period 1. Thus, a farmer maximizes 
the objective function subject to the following constraints: 
                                                                       𝑐𝑐0 = 𝑌𝑌 − 𝑥𝑥 − 𝑎𝑎                                                                   (2) 
                                                                   𝑐𝑐𝑠𝑠,𝑡𝑡

1 =  𝑓𝑓𝑠𝑠,𝑡𝑡(𝑥𝑥) + 𝑅𝑅𝑅𝑅                                                                 (3) 
The model portrays limited information-induced uncertainty via realization of 𝑡𝑡 (subjective or 
endogenous uncertainty), and the inherent uncertainty arising from realization of 𝑠𝑠 (exogenous 
uncertainty). Consequently, farm-households tend to reduce investments in risky farm inputs(𝑥𝑥), such as 
fertilizer, in order to smooth consumption [𝑢𝑢�𝑐𝑐𝑠𝑠,𝑡𝑡

1 �] in either good or bad 𝑠𝑠 of period 1 especially in the 
absence of perfect insurance markets (Dercon and Christiaenen, 2011). 

Given that farmers’ investment decisions on fertilizer(𝑥𝑥)are made up-front before realization of 
the state of nature 𝑠𝑠, they often base their decisions on subjective beliefs about the production function 
due to incomplete information. We assume that a farmer will decide to invest more in fertilizer and 
complementary management practices(𝑥𝑥)if the expected utility 𝑢𝑢𝑖𝑖1(𝑐𝑐𝑠𝑠,𝑡𝑡

1 ) under such investment is greater 
than the utility 𝑢𝑢𝑖𝑖0(𝑐𝑐𝑠𝑠,𝑡𝑡

1 ) under a low fertilizer investment, typical of smallholder farmers in SSA. The 
decision is denoted as a binary choice(𝑌𝑌𝑖𝑖), where a farmer can choose to invest more in fertilizer and 
management practices (𝑌𝑌𝑖𝑖 = 1) or not (𝑌𝑌𝑖𝑖 = 0):  

                                             𝑌𝑌𝑖𝑖 =   �
1     𝑖𝑖𝑖𝑖     𝐸𝐸[𝑢𝑢𝑖𝑖0�𝑐𝑐𝑠𝑠,𝑡𝑡

1 �]    <    𝐸𝐸[𝑢𝑢𝑖𝑖1(𝑐𝑐𝑠𝑠,𝑡𝑡
1 )] 

0     𝑖𝑖𝑖𝑖     𝐸𝐸[𝑢𝑢𝑖𝑖1�𝑐𝑐𝑠𝑠,𝑡𝑡
1 �]    ≤    𝐸𝐸[𝑢𝑢𝑖𝑖0(𝑐𝑐𝑠𝑠,𝑡𝑡

1 )] 
                                (4) 

However, the expected utility is not a sufficient condition, as fertilizer use is still on average low. 
As shown in equation 1, the uncertainty about the realization of 𝑡𝑡 due to limited information about 
fertilizer use behaves as an additional element of the risk space confronting farmers’ decisions (Koundari 
et al., 2006; Magruder, 2018). Thus, limited information tends to reduce farmers’ input use and uptake 
of optimal crop management practices (𝑥𝑥) in the same manner as with the inherent risk, and can lead to 
sub-optimal allocation of resources and yield outcome. In this regard, any intervention that can allow for 
reduction in limited information-induced uncertainty can induce investment in fertilizer and 



complementary practices. This will likely require more relevant site-specific extension services, in which 
recommendations are tailored to the specific conditions of individual farmers over the existing 
generalized (blanket) recommendations. In this regard, an additional condition 𝐼𝐼𝑖𝑖 is required for a 
farmer’s investment decision in period 0: 

                             𝑌𝑌𝑖𝑖 =   �
1     𝑖𝑖𝑖𝑖      𝐸𝐸[𝑢𝑢𝑖𝑖0�𝑐𝑐𝑠𝑠,𝑡𝑡

1 �]    <    𝐸𝐸[𝑢𝑢𝑖𝑖1(𝑐𝑐𝑠𝑠,𝑡𝑡
1 )]    |     𝐼𝐼𝑖𝑖   >    0

0     𝑖𝑖𝑖𝑖      𝐸𝐸[𝑢𝑢𝑖𝑖1�𝑐𝑐𝑠𝑠,𝑡𝑡
1 �]    ≤    𝐸𝐸[𝑢𝑢𝑖𝑖0(𝑐𝑐𝑠𝑠,𝑡𝑡

1 )]    |     𝐼𝐼𝑖𝑖   ≤    0
                   (5) 

Where 𝐼𝐼𝑖𝑖is an indicator for farmer 𝑖𝑖 having site-specific information. With a randomized provision of 
SSNM information (𝑇𝑇) to maize farmers in the planting season, we assume that the limited information-
induced uncertainty about investment in fertilizer use is potentially relaxed and 𝑡𝑡 notation is now 𝑡𝑡∗ to 
show the reduced uncertainty: 

                   𝑌𝑌𝑖𝑖 =   �
1     𝑖𝑖𝑖𝑖      𝐸𝐸[𝑢𝑢𝑖𝑖0�𝑐𝑐𝑠𝑠,𝑡𝑡

1 �]    <    𝐸𝐸[𝑢𝑢𝑖𝑖1(𝑐𝑐𝑠𝑠,𝑡𝑡∗
1 )]    |     𝐼𝐼𝑖𝑖   >    0  ≡   𝑇𝑇 = 1

0     𝑖𝑖𝑖𝑖      𝐸𝐸[𝑢𝑢𝑖𝑖1�𝑐𝑐𝑠𝑠,𝑡𝑡∗
1 �]    ≤    𝐸𝐸[𝑢𝑢𝑖𝑖0(𝑐𝑐𝑠𝑠,𝑡𝑡

1 )]    |     𝐼𝐼𝑖𝑖   ≤    0  ≡   𝑇𝑇 = 0
           (6) 

In comparison to the generalized recommendations, we expect that farmers’ access to the SSNM 
information help to update their prior subjective beliefs about the production relationship, which in turn 
reduces the uncertainty associated with their limited information about the expected returns. Given the 
reduction in uncertainty in response to the treatment, we anticipate increased investment in fertilizer and 
complementary management practices (direct effects) which can potentially improve yield responses. In 
a similar vein, access to SSNM with complementary information on the variability of expected returns 
(i.e. in addition to technical and average returns information), should result in reduced uncertainty about 
expected returns. In general, we expect increased fertilizer application rates for maize as current 
application rates are quite low, on average, with yields on farmers’ fields around 1 to 2 tons per hectare 
(ha) despite potentials of over 5 tons per ha (Liverpool-Tasie et al., 2017; Shehu et al., 2018).  
 
3. Methodology 
3.1 Research area 
We conducted this research in Kaduna, Katsina and Kano states of northern Nigeria, where maize is 
widely grown under a smallholder rain-fed system across the northern Guinea, southern Guinea and 
Sudan Savanna agro-ecological zones. These states were selected to pilot research activities for the 
development of the NE tool in the maize belt of Nigeria. We sampled maize producing farm-households 
in the research area using a two-stage sampling design. In the first stage, we randomly selected 99 villages 
belonging to 17 local government areas (LGAs). This was done by randomly generating 22 sampling 
grids of 10 x 10 km across the primary maize producing areas in the states to ensure spatial 
representativeness. The second stage was the construction of a sampling frame of households cultivating 
maize for each of the 99 selected villages. Lastly, eight households were randomly selected from the list 
of maize producing farm-households in each village, which gives a sample size of 792 households.     
 
3.2 Experimental design 
Our experiment consists of two treatment arms and a control. We employ a two-step trial design. The 
first step in the design was the random sampling of clusters (villages) in the research area, and the second 
step was village-level randomization to randomly assign villages into treatment and control. The first 
step aims at promoting external validity and the second is for internal validity. The use of village-level 
randomization over individual-level randomization is to avoid unintended behavioral and spillover 
effects that can interfere with causal identification (Athey and Imbens, 2017). With 99 randomly selected 
villages, we randomly assigned the villages into three distinct groups of 33 villages per group using a 
random number generator. This results in 264 households in each of the three groups who are on average 
expected to be comparable in both observed and unobserved characteristics. The first group of farmers 
belong to treatment one (T1), the second to treatment two (T2) and the third to control (C).  



 The farmers in T1 are exposed to site-specific informational intervention on soil fertility 
management. This entails recommendations on SSNM for a target yield, rationale for the 
recommendations, detailed explanation on how to implement these recommendations (technical 
information) and the average expected returns (returns information). The returns on investment is 
estimated based on a naïve expectation of post-harvest average price of maize using the prevailing market 
price at the time of providing the information which is prior to the planting time. This appears less 
credible and raises a lot of uncertainty for farmers’ investment decisions. This is akin to agronomic 
recommendations and extension services in general with information on average expected outcomes for 
farmers but no further information on the variability or riskiness of expected outcomes. Due to time lag 
between production decisions and realization of output, access to information on variability of expected 
outcomes may enhance farmers’ decision-making and matter for the take-up of optimal fertilizer use and 
farming practices.  
 The farmers in T2 receive information on the variability of the expected returns from uptake of 
the recommendations (variance information) in addition to the technical and returns information. To 
provide more credible information and take into account the uncertainty of expected returns on 
investment using expected prices of maize, we estimate a more robust expectation of maize prices based 
on weekly real prices of maize (prices are only for the post-harvest months of maize marketing which 
represents the marketing periods farmers often sell their produce after harvest) over the last eight years 
in the research area. The variability in expected returns is based on variation in expected market prices 
of maize taken at the 25th, 50th and 75th percentiles of the average monthly real prices of maize over the 
8-year period in addition to the prevailing market prices. Due to a much higher uncertainty associated 
with new technologies and farming practices such as SSNM, exposing farmers to information on 
riskiness of expected outcomes is more informative and could potentially enhance their input use 
decisions. The farmers in the control villages are not exposed to the interventions and their fertilizer use 
and management practices is based on the general recommendations prevailing in the extension systems.  
 
3.2.1 Source of intervention   
We provide the site-specific information intervention to farmers using the pre-release version of a 
nutrient management extension tool known as Nutrient Expert (NE), which allows extension agents to 
generate fertilizer and management recommendations tailored to the specific situation of an individual 
farmer’s field in real-time (Pampolino et al., 2012). The tool is based on the SSNM principle of 
dynamically adjusting fertilizer application based on crop-, field- and season-specific conditions referred 
to as the 4Rs of nutrient stewardship: the right fertilizer source, the right rate, the right placement and the 
right time of application. The provision of site-specific fertilizer recommendation by the tool is based on 
an individual farmer’s target yield and expected yield responses, and it relies on the QUEFTS 
(Quantitative Evaluation of the Fertility of Tropical Soils) model to predict maize yield responses. The 
model was calibrated for the study area using nutrient omission trials data collected in the previous two 
seasons. The tool works with farmer-supplied information about his plot and growing conditions and 
produces plot-specific information as output.  
 
3.2.2 Implementation of intervention 
The implementation of the intervention took place prior to the planting period of the 2017 season (April 
to May) using public agricultural extension agents. Prior to the implementation, there was intensive 
training and pre-test sessions to ensure that the extension agents properly understood how to use the tool, 
generate recommendations and interpret the results to farmers. Agents were also supervised in the field 
to ensure that the recommendation protocols were correctly followed. In the use of the tool by an 
extension agent, each farmer is fully engaged in the process and provides detailed information required 
for the tool to generate an output. This information includes the farmer’s previous season’s crop 
management practices on the plot (use of inorganic fertilizer and organic resources, seed type, cropping 



system, yield, etc.), characteristics of the growing environment (water availability, incidence of drought, 
flood, etc.), as well as the prevailing prices of inputs and maize. Additional information on soil 
characteristics (soil color, soil texture, etc.) is elicited by the extension agent through physical 
observation of the soil in the plot. Finally, a GPS-based plot area measurement is collected. The output 
generated for each farmer includes fertilizer use guidelines (amount, type, timing, placement) and 
optimal crop management practices to achieve a target yield (technical information), a simple profit 
analysis to compare returns under farmers current practice and the recommended (returns information). 
After generating recommendations, the extension agent clearly explains the details of the output to the 
farmer and provides a summary of the recommendations in a report sheet in the local language to serve 
as a reminder for the farmer during the course of the growing season.  
 
3.3 Data collection 
We implement two rounds of a farm-household panel survey: a baseline survey conducted in 2016 and a 
follow-up visit in 2017. Both survey rounds were conducted during the maize harvest season (September 
to October). We collected baseline data from 792 households and follow-up data from 788 households, 
giving an attrition rate of 0.5%. Despite the low attrition rate, we still test for possible selective or 
differential attrition across treatments by regressing a dropout indicator variable against treatment 
dummies (Özler et al., 2018). The results show that there is no evidence of selective or differential 
attrition of farmers from any of the two treatment arms, which indicate that the attrition in our sample 
does not pose a threat to the validity of our results.  
 
3.3 Identification strategy 
A simple comparison of the average post-treatment outcomes between the treated and control groups will 
suffice for causal identification under randomized experiments (Athey and Imbens, 2017). Since we have 
a panel data, we estimate the intention-to-treat (ITT) effect using difference-in-difference (DD) 
specification, which compares the average change in outcomes over time for the treated and control 
groups. It accounts for possible imbalances in pre-treatment outcomes and time-invariant unobserved 
heterogeneity not controlled for by randomization. We present a specification of our DD in equation (7).  
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1T1𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2T2𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽3Post𝑡𝑡  +  𝛽𝛽4T1𝑖𝑖𝑖𝑖𝑖𝑖 ∗ Post𝑡𝑡 +  𝛽𝛽5T2𝑖𝑖𝑖𝑖𝑖𝑖 ∗ Post𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖           (7) 
In an alternative specification, equation (8), we include baseline controls for plot-, farmer and household 
characteristics that are potentially correlated with outcomes of interest to improve precision of estimates. 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1T1𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2T2𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽3Post𝑡𝑡 + 𝛽𝛽4T1𝑖𝑖𝑖𝑖𝑖𝑖 ∗ Post𝑡𝑡 + 𝛽𝛽5T2𝑖𝑖𝑖𝑖𝑖𝑖 ∗ Post𝑡𝑡 + 𝛽𝛽6X𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖     (8) 
Where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is the outcome for focal plot of household 𝑖𝑖 in village 𝑗𝑗 at year 𝑡𝑡 (fertilizer application rates 
(kg/ha), adoption of optimal fertilizer use management practices in terms of combined application of 
inorganic and organic fertilizer (1/0), split N application (1/0), fertilizer application at sowing time, spot 
application of fertilizer (dibbling (1/0)), and maize yields (tons/ha)), T1𝑖𝑖𝑖𝑖𝑖𝑖 and T2𝑖𝑖𝑖𝑖𝑖𝑖 are binary indicators 
for farmers in treatment one and two respectively, 𝛽𝛽4 and 𝛽𝛽5 are the coefficients of interest that captures 
the effects of treatment one and treatment two interventions respectively, Post𝑡𝑡 is an indicator equaling 
zero for observations in the baseline year and one for observations in the follow-up round, X𝑖𝑖𝑖𝑖 is a vector 
of baseline control variables, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is a random error term clustered at the village level to account for the 
cluster design, 𝛽𝛽0 is the average value of the outcomes of interest for the control group at the baseline. 
The binary outcome variables are estimated using a linear probability model (LPM).  

To consistently estimate the effects of the interventions on fertilizer application rates especially 
for farmers who are currently using rates below the recommended application rates, we use a Heckman 
two-step procedure (Heckman, 1979) to correct for possible selection bias. This procedure estimates an 
Inverse Mills Ratio (IMR) from a probit estimation of the probability of farmers’ current fertilizer use 
rates being below the recommended fertilizer use rates (first stage). The IMR is included as an additional 



regressor in the outcome equations 9 and 10 (second stage) to control for possible selection bias from 
correlation of unobservables in the selection and the outcome equations.   

We perform several robustness checks of our results. First, to control for the proportion of false 
treatment effects due to multiple outcomes and pairwise comparisons, we perform multiple hypothesis 
corrections on our outcomes of interest using False Discovery Rate (FDR)-adjusted q-values (Anderson, 
2008). These q-values are computed following Anderson (2008) and related empirical implementations 
(Özler et al., 2018). The second robustness check is with respect to the type of statistical inference 
employed. Although, statistical inference in randomized experiments is commonly by sampling-based 
inference (asymptotic inference), it is increasingly recommended to use randomization-based inference 
especially for clustered designs or finite samples (Athey and Imbens, 2017; Heß, 2017; Young, 2018). 
Randomization inference is not sensitive to the number of clusters or observations, size of clusters, ratio 
of treated and control clusters and yields consistent estimates solely based on the randomization 
assumption (Heß, 2017). As a robustness check to our hypothesis testing by conventional inference p-
values, we perform same tests of statistical significance using randomization inference p-values. In 
general, the results are robust to alternative statistical inference and corrections for multiple hypothesis 
testing. 
 
4. Results  
 
4.1 Baseline summary statistics and treatment balance 
Table 1 shows the baseline summary statistics by treatment status of farmers and orthogonality tests. 
Across the treatment groups (column 1), the farmers are on average 44 years old, have about 5 years of 
formal schooling and 19 years of maize farming experience. They live in households with an average of 
about 9 members, 3 ha of farmland and 2 tropical livestock units.  We perform randomization checks by 
testing equality of means of the baseline characteristics between the three groups (T1=C, T2=C and 
T1=T2) which is equivalent to a simple regression of each baseline characteristic on a treatment dummy. 
The p-values of the pairwise comparisons in columns 5, 6 and 7 show that there are no significant 
differences in almost all the baseline characteristics between the three groups. Overall, the p-values for 
the chi-squared tests of joint orthogonality between the three groups show that we cannot reject the null 
hypothesis that the baseline observables are orthogonal to the treatment status and thus conclude that our 
randomization design produced comparable groups. Only in three cases out of the 69 orthogonality tests 
(23 variables for each group) across the three groups do we find significant differences. These are 
household size for T2=C and access to extension as well as yield for T2=C. We can control for these 
imbalances with our difference-in-difference model estimation especially for yield outcome, which could 
lead to upward bias if we rely only on post-treatment maize yields. 



 
 
Table 1: Baseline characteristics and balance tests 

 Overall 
sample 
(1) 

Treatment 
one (T1) 
(2) 

Treatment  
two (T2) 
(3) 

Control 
(C) 
(4) 

T1=C 
p-value 
(5) 

T2=C 
p-value 
(6) 

T1=T2 
p-value 
(7) 

Farmer/household characteristics        
Age of head (years) 44.24 44.51 44.25 43.96 0.599 0.774 0.807 
 (0.42) (0.76) (0.73) (0.71)    
Education of head (years) 5.20 5.36 4.83 5.41 0.916 0.268 0.326 
 (0.22) (0.38) (0.37) (0.37)    
Household size (no.) 9.12 8.96 9.77 8.62 0.426 0.016 0.113 
 (0.19) (0.33) (0.39) (0.27)    
Group membership (1/0) 0.31 0.34 0.29 0.289 0.190 0.924 0.225 
 (0.02) (0.03) (0.03) (0.03)    
Access to credit (1/0) 0.23 0.22 0.24 0.24 0.679 0.839 0.536 
 (0.02) (0.03) (0.03) (0.03)    
Maize farming experience (years) 18.96 19.50 18.45 18.92 0.524 0.601 0.260 
 (0.37) (0.65) (0.67) (0.62)    
Access to extension (1/0) 0.39 0.43 0.39 0.35 0.050 0.281 0.378 
 (0.02) (0.03) (0.03) (0.03)    
Maize contract farming (1/0) 0.19 0.18 0.18 0.21 0.440 0.509 0.910 
 (0.01) (0.02) (0.02) (0.03)    
Livestock holding (TLU)1 2.14 2.11 2.35 1.95 0.677 0.184 0.555 
 (0.15) (0.34) (0.21) (0.22)    
Number of plots cultivated 2.70 2.75 2.66 2.69 0.528 0.763 0.356 
 (0.04) (0.07) (0.07) (0.07)    
Total farm area (hectare) 3.11 3.08 3.26 2.98 0.728 0.370 0.560 
 (0.12) (0.20) (0.24) (0.20)    
Assets (1,000 NGN)2 545.66 557.12 598.99 480.88 0.232 0.103 0.579 
 (28.83) (47.53) (58.48) (42.40)    
Annual income (1,000 NGN)3 184.21 178.74 196.12 177.77 0.969 0.539 0.517 
 (11.09) (14.71) (22.43) (19.73)    
Access to off-farm income (1/0) 0.88 0.86 0.91 0.86 0.900 0.105 0.135 
 (0.01) (0.02) (0.02) (0.02)    
Plot-level characteristics        
Focal plot area (hectare) 0.80 0.84 0.81 0.76 0.345 0.609 0.719 
 (0.04) (0.06) (0.07) (0.06)    
Plot ownership (1/0) 0.96 0.94 0.97 0.97 0.108 1.000 0.108 
 (0.01) (0.02) (0.01) (0.01)    
Plot distance (time in minutes)4 15.33 14.72 16.02 15.25 0.646 0.627 0.372 
 (0.57) (0.70) (1.27) (0.93)    
Use organic fertilizer (1/0) 0.78 0.76 0.78 0.79 0.404 0.673 0.680 
 (0.02) (0.03) (0.03) (0.03)    
Use improved seed (1/0) 0.29 0.27 0.31 0.28 0.627 0.506 0.250 
 (0.02) (0.03) (0.03) (0.03)    
Use mineral fertilizer (1/0) 0.97 0.96 0.97 0.97 0.484 1.000 0.484 
 (0.01) (0.01) (0.01) (0.01)    
NPK fertilizer (kg/ha) 127.29 128.51 131.77 121.60 0.465 0.287 0.740 
 (3.92) (6.87) (7.00) (6.50)    
Urea fertilizer (kg/ha) 85.89 83.99 88.94 84.75 0.925 0.616 0.539 
 (3.34) (5.52) (5.87) (5.95)    
Maize yield (tons/ha) 2.06 1.98 2.08 2.11 0.091 0.704 0.201 
 (0.03) (0.06) (0.06) (0.06)    
Joint orthogonality test p-value     0.840 0.502 0.282 
N 792 264 264 264    

p-values are from t-tests of equality of means and the joint test p-values are from chi-squared tests, 1One tropical 
livestock unit (TLU) is equivalent to 250 kg (cattle=0.7, sheep/goat=0.1, pig=0.2, chicken=0.01, duck=0.02, 
rabbit=0.01), 2Value of non-land assets, including farm equipment and machinery, 3Per-adult equivalent household 
annual income from all sources, 4 Time to walk from homestead to the plot, Standard errors are reported in parentheses,  
NGN: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time  



4.2 Farmers’ actual and recommended fertilizer application rates and yields  
We examine farmers’ baseline fertilizer application rates and maize yields, and compare these with the 
recommended rates and corresponding expected yield level from the treatment (table 2). Table 2 shows 
that on average farmers in treatment one apply about 93 kg of N, P2O5 and K2O per ha in comparison 
with the average recommended site-specific rate of 242 kg of N, P2O5 and K2O per ha resulting in a 
nutrient gap of 149 kg (61%). This nutrient gap may not be unconnected to the yield gap of an average 
of 3.3 tons per ha (63%) as macronutrients deficiencies are considered the primary yield-limiting factors 
of maize production.  For treatment two farmers, they apply on average 99 kg of N, P2O5 and K2O per 
ha with an associated yield of 2.1 tons per ha in comparison with the average recommended site-specific 
rate of 238 kg of N, P2O5 and K2O with an expected yield of 5.3 tons per ha. This amounts to a nutrient 
gap of 139 kg (58%) and a yield gap of 3.3 tons per ha (61%) for farmers in treatment two. Across the 
two treatment arms, the farmers’ application rate of N is about two-thirds of the average N, P2O5 and 
K2O nutrients applied per ha. The observed higher application of N is expected, as it is the most limiting 
nutrient of maize production in Nigeria and SSA in general which necessitates application of more N to 
meet its requirement. In a similar vein, the site-specific recommended rates prescribe a higher N 
application of about one-third of the average N, P2O5 and K2O nutrients per ha for a target maize yield. 
Across the treatment arms, the majority (95%) of farmers apply nutrients rates below the recommended 
rates (95% of farmers in treatment one and 91% of farmers in treatment two).  
 
Table 2: Descriptive statistics on farmers’ actual and recommended fertilizer use rates and yields  
 N  

(kg/ha) 
P2O5 

 (kg/ha) 
K2O  
(kg/ha) 

All 
(kg/ha) 

Yield 
(tons/ha) 

Treatment one (T1)      
Baseline nutrient rates1 and yields 58.49 

(48.86) 
17.42 
(14.54) 

17.42 
(14.54) 

93.34 
(65.61) 

1.98 
(0.90) 

Recommended nutrient rates and 
expected yields 

129.10 
(23.11) 

56.65 
(25.81) 

56.36 
(25.86) 

242.11 
(72.10) 

5.30 
(1.07) 

Nutrient gap and yield gap 70.61 
(50.72) 

39.23 
(28.20) 

38.94 
(28.23) 

148.77 
(89.14) 

3.32 
(1.49) 

Nutrient gap and yield gap (%) 55 69 69 61 63 
Nutrient rate below the 
recommended (%)2 

91 95 95 95  

Treatment two (T2)      
Baseline nutrient rates1 and yields 60.55 

(49.02) 
19.30 
(17.94) 

19.30 
(17.94) 

99.15 
(72.92) 

2.08 
(0.96) 

Recommended nutrient rates and 
expected yields 

128.81 
(20.65) 

54.59 
(23.78) 

54.38 
(23.89) 

237.78 
(64.92) 

5.34 
(1.10) 

Nutrient gap and yield gap 68.26 
(52.60) 

35.29 
(30.04) 

35.08 
(29.26) 

138.63 
(97.43) 

3.26 
(1.43) 

Nutrient gap and yield gap (%) 53 65 65 58 61 
Nutrient rate below the 
recommended (%)2 

90 91 91 91  

The macronutrients are based on the fertilizer blends used by farmers, which include NPK 15:15:15 (contains 15% N, 15% P 
and 15% K), NPK 20:10:10 (20% N, 10% P and 10% K) and urea (46% N), 
1 Farmer’s actual nutrient application rates, 2 Share of farmers who apply nutrients below the recommended site-specific rates, 
Standard deviations are reported in parentheses, N = 264 farmers in each treatment.  
 
4.3 Effects of farmers’ exposure to site-specific extension services  
4.3.1 Effect on farmers’ fertilizer application rates 
Table 3a shows the ITT effects of farmers’ exposure to SSNM information on their fertilizer application 
rates. Column 7 shows that access to SSNM information increases macronutrient application rates by an 



average of 6 kg of N, P2O5 and K2O per ha which corresponds to around 6% increase for treatment one 
farmers and 12 kg (around 12%) for treatment two farmers. However, the magnitudes of these increases 
are small and statistically insignificant at conventional probability levels. In practice, we do not expect 
an increase in fertilizer application rates for all farmers exposed to site-specific fertilizer application rates 
as some farmers are expected to reduce their current application rates as prescribed by the site-specific 
recommendations. We only expect an increase in fertilizer application rates for farmers whose current 
fertilizer application rates prior to the interventions are below the site-specific recommended rates.  

Table 3b shows the ITT effects on fertilizer application rates conditional on farmers’ current 
application rates being below the recommended application rates. We control for possible sample 
selection bias using the Heckman selection model as reported in columns 2, 4, 6 and 8. The estimated 
coefficients of Inverse Mills Ratio (IMR) are not significantly different from zero, which implies that we 
do not reject the null hypothesis of no selection bias. Correspondingly, we also observe that the estimates 
with no control for selection bias in columns 1, 3, 5 and 7 differ little from the estimates from the 
Heckman selection model (Wooldridge, 2010). Based on the estimates in column 8, the results show that 
exposure to SSNM information increases macronutrient application rates by an average of 9 kg of N, 
P2O5 and K2O per ha (around a 9% increase) for treatment one farmers and 22 kg (around 21%) for 
treatment two farmers. The observed increase for treatment two farmers is statistically significant at the 
5% probability level and not significant for treatment one farmers, which means that exposing farmers 
to information on SSNM and riskiness of expected returns produces better response than 
recommendations with no information on riskiness of expected returns. In terms of the treatment effects 
for each of the nutrients, the observed increase is consistent across the nutrients.  



Table 3a: ITT effects on farmers’ fertilizer application rates 
Variables N (kg/ha)  P2O5 (kg/ha)  K2O (kg/ha)  All (kg/ha) 

(1) (2) (3) (4) (5) (6) (7) (8) 
Treatment one 0.976 0.714  2.360 2.188  2.398 2.224  5.736 5.127 
 (6.637) (6.792)  (2.467) (2.510)  (2.459) (2.502)  (9.867) (10.155) 
Treatment two 8.200 8.020  2.153 2.101  2.054 2.001  12.405 12.120 
 (5.638) (5.652)  (2.465) (2.473)  (2.436) (2.444)  (8.888) (8.933) 
HH controls No Yes  No Yes  No Yes  No Yes 
1F-statistic 1.11 1.13  0.01 0.00  0.03 0.01  0.46 0.50 
Baseline control mean  62.19 62.19  20.35 20.35  20.35 20.35  102.88 102.88 
Observations 1380 1380  1380 1380  1380 1380  1380 1380 

Estimates in columns 1, 3, 5 and 7  (results without HH controls), estimates in columns  2, 4, 6 and 8 (results with control for baseline covariates: age of farmer, 
education of farmer, household size, group membership, access to credit, access to off-farm income, access to contract farming, value of assets, plot ownership, 
plot distance),  
1F-test of equality of treatment effects (treatment one=treatment two) 
 
Table 3b: ITT effects on farmers’ fertilizer application rates 
Variables N (kg/ha)  P2O5 (kg/ha)  K2O (kg/ha)  All (kg/ha) 

(1) (2) (3) (4) (5) (6) (7) (8) 
Treatment one 3.807 3.805  2.458 2.437  2.492 2.468  8.759 8.710 
 (6.444) (5.896)  (2.585) (2.193)  (2.571) (2.188)  (10.290) (9.191) 
Treatment two 13.162** 13.167**  4.482* 4.516**  4.357* 4.395**  22.000** 22.078** 
 (5.448) (6.006)  (2.362) (2.237)  (2.327) (2.233)  (8.538) (9.367) 
IMR (Lambda) - 1.438  - 10.728  - 12.058  - 24.226 
  (48.617)   (17.964)   (17.892)   (75.645) 
HH controls Yes Yes  Yes Yes  Yes Yes  Yes Yes 
1F-statistic 2.50 1.10  0.96 0.89  0.83 0.77  2.15 2.10 
Baseline control mean  62.19 62.19  20.35 20.35  20.35 20.35  102.88 102.88 
Observations 1312 1380  1312 1380  1312 1380  1312 1380 

Estimates in columns 1, 3, 5 and 7 (results with no control for sample selection), estimates in columns 2, 4, 6 and 8 (second stage regression of Heckman selection 
model: control for sample selection), 
Standard errors clustered at the village level reported in parentheses, with significance denoted as * p < 0.1, ** p < 0.05 and *** p < 0.01 
1F-test of equality of treatment effects (treatment one=treatment two) 



4.3.2 Effect on farmers adoption of optimal fertilizer use management practices 
In table 4, we report the results of the effects of exposing farmers to SSNM information on adoption of 
optimal fertilizer use management practices. These practices relate to the source of nutrients, timing of 
nutrients application and method of nutrients application that are recommended to increase the efficiency 
of fertilizer use. Columns 1 and 2 of the table show that access to the interventions increases the 
likelihood of adopting combined use of inorganic fertilizer and organic manure as nutrient sources by an 
average of 15% and 16% points for treatments one and two farmers respectively. The effects are 
significant at the 1% probability level. This is expected as the treated farmers may have received better 
information about the complimentary effects of the combined use of inorganic fertilizer and organic 
manure in improving response to fertilizer application. Columns 3 and 4 shows that on average, the 
likelihood of adopting the practice of splitting N application increases by 13-14% points for farmers in 
treatment one and the observed effects with and without baseline controls are significant at the 10% 
probability level. The likelihood of adopting this practice increases by an average of 17% points for 
farmers in treatment two at the 5% probability level. Splitting application of N is strongly recommended 
in SSNM to ensure that N is available when needed at different stages in the growth cycle of maize. In 
terms of fertilizer application at sowing, columns 5 and 6 shows that the farmers in treatments one and 
two are on average 17% and 19% points respectively more likely to apply fertilizer at the time of sowing 
and the effects are statistically significant at 1%. Fertilizer application at sowing as an element of timing 
of nutrient application contributes in making nutrients available at the early stage of crop development. 
This is an uncommon practice in the research area as indicated by the baseline mean of 14% for the 
control group.  For the use of dibbling or spot application as a method of nutrients application, columns 
7 and 8 shows that access to the interventions increases the likelihood of using this practice by an average 
of 14-15% points and 20% points for treatments one and two farmers respectively. The effects are 
significant at the 10% and 1% probability levels for treatments one and two farmers respectively. This 
implies that incorporating nutrients into the soil rather than applying on the soil surface is more appealing 
to the treated farmers due to their exposure to SSNM information. This practice reduces nutrient losses 
and ensures optimal uptake of nutrients applied to crops.    
 
4.3.3 Effect on maize yields 
The results in columns 1 and 2 of table 5 show that exposing farmers to the informational interventions 
leads to an increase in yields for treatment one farmers by an average of 0.2 tons per ha which corresponds 
to around 10% increase in yield over the baseline yield of the control farmers. For the treatment two 
farmers, the interventions increase yields on average by 0.3 tons per ha (around 14%). These observed 
effects are statistically significant at the 1% and 5% probability levels for farmers in treatment one and 
two respectively. These results imply that providing fertilizer recommendations targeted at the specific 
needs of individual farmers can produce considerable yield gains for farmers. A potential confounding 
factor to the observed treatment effects is the incidence of fall army worm (FAW) infestation during the 
2017 maize growing season in Nigeria and other parts of SSA (Nagoshi et al., 2018). Although, we find 
a relatively low incidence of 17%, we control for this to consistently estimate the causal effect of the 
interventions. The results in column 3 are consistent with those of columns 1 and 2, which imply that the 
incidence of FAW does not interfere with our causal inference. In columns 4 and 5, we report the results 
of the yield effects of the interventions conditional on farmers’ current application rates being below the 
recommended application rates. The coefficient of Inverse Mills Ratio (IMR) is not statistically 
significant, indicating no evidence of sample selection bias. The results are very similar to those of 
columns 1, 2 and 3. However, the yield gains for farmers in treatment one is slightly lower and 
statistically insignificant at the conventional probability levels. In general, the results show that 
conveying SSNM information to farmers is potentially effective in improving yield response.



Table 4: ITT effects on farmers’ fertilizer use management practices 
Variables Inorganic-organic 

fertilizer (1/0) 
 N split application (1/0)  Fertilizer at sowing 

date (1/0) 
 Fertilizer application method 

(dibbling (1/0)) 
(1) (2) (3) (4) (5) (6) (7) (8) 

Treatment one 0.147*** 0.148***  0.135* 0.134*  0.170*** 0.167***  0.149* 0.138* 
 (0.052) (0.052)  (0.076) (0.076)  (0.056) (0.056)  (0.077) (0.077) 
Treatment two 0.164*** 0.163***  0.173** 0.171**  0.187*** 0.186***  0.202*** 0.198*** 
 (0.052) (0.051)  (0.068) (0.069)  (0.061) (0.061)  (0.073) (0.073) 
HH controls No Yes  No Yes  No Yes  No Yes 
1F-statistic 0.10 0.08  0.38 0.37  0.09 0.13  0.45 0.57 
Baseline control mean  0.77 0.77  0.79 0.79  0.14 0.14  0.36 0.36 

Estimates in columns 1, 3, 5 and 7  (results without HH controls), estimates in columns  2, 4, 6 and 8 (results with control for baseline covariates: age of farmer, 
education of farmer, household size, group membership, access to credit, access to off-farm income, access to contract farming, value of assets, plot ownership, 
plot distance), Standard errors clustered at the village level reported between parentheses, Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01 
1F-test of equality of treatment effects (treatment one=treatment two) 
 
Table 5: ITT effects on maize yields 
 Yield (tons/ha) 

(1) (2)  (3) (4)             (5) 
Treatment one 0.201* 0.201*  0.205* 0.194 0.193 
 (0.120) (0.120)  (0.120) (0.122) (0.123) 
Treatment two 0.256** 0.256**  0.257** 0.262** 0.265** 
 (0.121) (0.121)  (0.121) (0.127) (0.125) 
FAW (1/0)  0.019     
  (0.075)     
IMR (Lambda)      0.693 

(1.004) 
HH controls No No  Yes Yes Yes 
1F-statistic 0.23 0.23  0.19 0.31 0.34 
Baseline control mean  2.12 2.12  2.12 2.12 2.12 
Observations 1380 1380  1380 1312 1380 

Column 1 (results without HH controls) column 2 (results with control for fall army worm (FAW) infestation during the maize production season, column 3 (results 
with control for baseline covariates: age of farmer, education of farmer, household size, group membership, access to credit, access to off-farm income, access to 
contract farming, value of assets, plot ownership, plot distance), column 4 (results without control for sample selection), column 5 (Heckman selection model: 
control for sample selection, Standard errors clustered at the village level reported between parentheses, 
Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01 
1F-test of equality of treatment effects (treatment one=treatment two)



5. Discussion 
We find that exposing farmers to site-specific nutrient management information in a tablet-based decision 
support tool improves fertilizer application rates for maize cultivation but for farmers who are using rates 
below the recommended rates. This indicates that overly coarse information on fertilizer use (i.e. the 
typical case of “blanket” recommendations) explains an important part of the observed low intensity of 
fertilizer use for some farmers in our research area. This finding is consistent with the literature on the 
role of limited knowledge in conditioning fertilizer use (Jayne et al., 2019). Moreover, the provision of 
a recommended fertilizer application rate for a target yield, combined with additional information on the 
distribution of expected returns, appears to increase fertilizer use by reducing farmers’ uncertainty about 
fertilizer investment outcomes. We see evidence for this in the fact that fertilizer application rate 
treatment effects are only significant for farmers in treatment two (i.e. who received additional 
information on the riskiness of expected returns). Our findings contrast somewhat with the findings of 
closely-related randomized experiments. Fishman et al. (2016) found that access to site-specific fertilizer 
recommended rates from soil testing in India did not affect fertilizer application for rice, mainly due to 
the treated farmers’ lack of confidence in the recommendations. Islam (2014) found that the receipt of 
fertilizer application guide from leaf color chart in Bangladesh significantly reduced the application rates 
of urea for rice, but this was in a context where most of the farmers had been over-applying urea prior to 
site-specific advice.   
 We find strong evidence that receipt of the interventions improves fertilizer use management 
practices in terms of combined use of fertilizer and organic manure, fertilizer application timing (split 
applications of N, including application at sowing),  and application method (spot application aka 
“dibbling”). This is not surprising as the informational interventions are not only about optimal fertilizer 
application rates but strongly emphasize the use of optimal fertilizer use management practices to 
enhance yield responses to fertilizer. This is predicated on the idea that efforts to improve yield responses 
to fertilizer does not only depend on fertilizer use rates but optimal crop management practices (Burke 
et al., 2017; Jayne et al., 2019). This result is consistent with Pan et al. (2018) who find that information 
via extension services significantly increased the uptake of improved cultivation practices in Uganda.  

We find evidence of yield increasing effects of the farmers’ receipt of the informational 
interventions, and the impact pathway for the observed yield gains largely occurs through the improved 
fertilizer use management practices of farmers. This indicates that although increased investment in 
external inputs such as fertilizer can be risk increasing, the knowledge of correct use in the context of 
SSNM can relax the risk of low yield response arising from poor technical knowledge of fertilizer use 
(Benson and Mogues, 2018). Furthermore, access to information on the expected returns as well as the 
variability of the expected returns possibly improves the farmers input use decisions and management 
practices resulting in yield gains. This is expected as such information reduces the perceived uncertainty 
about the expected benefits of the recommended site-specific fertilizer application practices over the 
traditional practices of farmers in line with our conceptual framework.   

Finally, we provide some policy implications of our findings for agricultural extension systems 
and larger development community. Our empirical evidence supports the use of DSTs such as NE in 
agricultural extension systems to improve provision of site-specific nutrient management information to 
farmers. However, there are areas of concern that need to be addressed. For the development of nutrient 
management and other agronomic DSTs, farmers are not only interested in the agronomic 
recommendation and the associated average expected returns, but are also interested in the variability of 
expected returns. Conveying site-specific information to farmers with predicted returns based on average 
yields without information on variance around the average yields (riskiness of expected returns) can be 
misleading and less informative for farmers (Vanlauwe et al., 2016). The use of weather data such as 
rainfall should be explored to simulate possible distribution of expected yields and returns on investment 
in the use of site-specific recommendations over the existing practice of farmers, which will be more 
informative, particularly for risk-averse farmers. Despite the potentials of current agronomic advisory 



tools, another area of concern is that the use of the tools requires physical contact of extension agents 
with farmers, which may limit farmers’ access given the poor extension coverage due to the very low 
agents-to-farmers ratio that is typical in the region. This calls for increased investments in extension 
systems to scale out the use of these innovative tools for better service delivery to farmers. In other words, 
investments in DST development should not be seen as substitutes for investments in extension systems 
and other modes of scaling advisory services. Lastly, with so much emphasis on intensifying fertilizer 
application rates in environments where the returns to fertilizer investments are often low and variable, 
extension systems could benefit from DSTs which better inform farmers about optimal fertilizer use and 
crop management practices beyond simply making fertilizer application rate recommendations. This is 
consistent with empirical studies (Burke et al., 2017; Jayne et al., 20119), on promoting complementary 
measures and services to improve yield response to fertilizer application and returns on investment.  
 
6. Conclusion 
In this paper, we empirically evaluate the impact of farmers’ exposure to site-specific nutrient 
management recommendations for maize from an ICT-enabled extension tool ‘Nutrient Expert’ in the 
maize belt of Nigeria. To do so, we implement a clustered RCT with two treatment groups and a control 
group. We find evidence of improved fertilizer application rates specifically for farmers whose 
application rates prior to the interventions are below the site-specific recommended rates for their 
growing conditions. However, this is only significant for farmers exposed to the full range of information, 
i.e. the site-specific fertilizer recommendations, average expected returns and distribution of expected 
returns. There is substantial evidence of significant increase in the use of optimal fertilizer use 
management practices in response to the receipt of site-specific nutrient management informational 
interventions by the farmers. Also, the receipt of site-specific nutrient management informational 
interventions by the farmers resulted in significant yield increasing effects. The impact pathway for the 
yield gains largely occurs through complementary fertilizer use management practices. In terms of the 
magnitude of response to the informational interventions, the farmers exposed to additional information 
on variance of expected returns have better response than farmers who did not receive the additional 
information. This suggests that the provision of information on the uncertainty of expected returns (rather 
than simply providing the average expected returns, as most tools do) matters for farmers given the time 
lag between investment decisions and realization of returns. To avoid relying solely on predicted returns 
based on average yields, this calls for further improvement of tools to allow for provision of information 
on variability of expected returns on the use of recommended site-specific fertilizer management 
practices for better informed input use decision-making. Our findings lend credence to the use of ICT-
enabled tools for extension, and strongly suggest that extension and development organizations as well 
as policy institutions interested in improving maize yields and food security should support and promote 
the use of DSTs to improve the delivery of relevant soil fertility advisory services to farmers. 
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